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CHAPTER 1

FUNCTIONAL REASONING AND GRAPH COMPREHENSION
IN SCHOOL MATHEMATICS

The research problem of this study was twofold: (a) to
identify high school students' and preservice teachers'
levels and patterns of achievement in reading, construct-
ing, and interpreting Cartesian graphs and in analyzing the
underlying functional relationships; and (b) to describe
some of their reasoning strategies and conceptual diffi-
culties,

This chapter outlines the educational significance of
the investigation., It surveys the importance ascribed to
functional reasoning and graph comprehension by mathematics

educators and contrasts them with students' attainments.

Functional Reasoning and Graph Comprehension

as Educational Objectives

The concept of function was developed to express in
mathematical terms the idea of dependence (Caraga, 1958;
Shuard & Neil, 1977) and quickly became a fundamental

concept of mathematics. Infinitesimal analysis, one of the
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most successful branches of mathematics, is based on this
concept, which is also an instrument of prime importance in
the natural, social, and behavioral sciences as well as in
engineering. The increasingly widespread presence of the
computer in so many domains of modern life and its avail-
ability in schools has strengthened the importance of this
concept (Fey, 1984),

EBarly in the 1900s Klein (1908/1945) argued that the
notion of a numerical function "should permeate. . . . the
entire mathematical instruction in the higher schools" (p.
205) . And indeed, the concept of numerical function is in
many countries at the heart of the high school mathematics
program. In the United States it plays an important role in
the traditional Algebra I, Algebra I1I, and Trigonometry
courses, and recent proposals for curriculum change have
recommended that the function concept form the basis of the
high school curriculum (College Board, 1983; Fey, 1984).

Cartesian graphs are closely related to numerical
functions. In fact, a numerical function has one form of
representation in a Cartesian graph, Many méthemafical
properties of functions are so well described by their
graphs that the study of a function--determining inter-
vals where it is increasing, decreasing, or constant;
determining zeros, discontinuities, and asymptotes;
searching for symmetry and periodic properties; etc.--is
usually undertaken with reference to a sketch of its

geometric representation.
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Cartesian graphs are useful in communicating informa-
tion but are also powerful analytical tools that can be
employed to study complex phenomena (Elkins & Wockenfuss,
1972; French, 1982; Janvier, 1978; Shilov, 1978). From them
it is possible to derive qualitative information and to
draw inferences about relationships among variables as well
as specific quantitative data.

The wide use of graphs in mathematics instruction may
also play a positive role in the development and reinforce-
ment of many mathematical concepts (Christopher, 1982;
Hamley, 1934; Sullivan & O'Neil, 1980)., A mastery of the
"language of graphs™” is an important basis for the study of
further mathematics,

A wide consensus seems to exist that the understanding
and appropriate use of information conveyed in graphical
form is an important objective for mathematics education
(Conference Board of the Mathematical Sciences, 1982;
Gallagher, 1979; Hill, 1980; National Council of Super-
visors of Mathematics, 1978; National Council of Teachers
of Mathematics, 1980; National Institﬁte of Educafion,
1975; National Science Commission on Precollege Education
in Mathematics, Science and Technology, 1983; Shuard &
Neil, 1978).

Applying the concept of function in more than trivial
ways and reading, constructing, and interpreting graphs
should be regular activities in middle and high school

mathematics instruction. They should relate and support



the development of other mathematical topics. But these
activities rarely have been coherently addressed in school
programs (Bell & Janvier, 1981; Janvier, 1978; McKenzie &

Padilla, 1983; Saltinski, 1983; Slaughter, 1983).

Students' Difficulties in Functional Reasoning

and Graph Comprehension

Students are usually able to do some elementary
graphing tasks well, like finding maximum or minimum values
or plotting points given their Cartesian coordinates
(Bamberger, 1942; Bestgen, 1980; Carpenter, Lindquist,
Mathews, & Silver, 1983; Lindquist, Carpenter, Silver, &
Mathews, 1983; McKenzie, 1984; Riggs, 1967; Shaw, Padilla,
& McKenzie, 1983; Strickland, 1938; Thorp, 1933). Students
can also easily develop a reasonable proficiency in han-
dling routine exercises involving numerical functions
(Dreyfus & Eisenberg, 1982; Goldberg, 1962/1975; Smith,
1973; Thomas, 1971, 1975). These tasks have a procedural
nature in that precise ditéctions can be established to
execute them correctly.

But students' performance on more complex tasks tends
to be very unsatisfactory. Students have great difficulty
in relating the Cartesian representation of simple lines
and curves to the corresponding algebraic equations as well
as in interpreting the qualitative information implicit in

the graphs (Barr, 1980, 1981; Bestgen, 1980; Carpenter,
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Corbitt, Kepner, Lindguist, & Reyes, 1981; Kerslake, 1977,
1981; shaw, Padilla, & McKenzie, 1983; Wagner, Rachlin, &
Jensen, 1984) or in using all the relevant information
given to discuss the features of functional relationships
(Janvier, 1978; Karplus, 1979; Markovits, Eylon, &
Bruckheimer, 1983), Many students seem not to havg devel-
oped an adequate understanding of what Cartesian graphs
are, how they represent relationships between variables,
and what information can be derived from them. Even at the
college level, students sometimes experience difficulties
in graph interpretation (Konshak & Monk, 1976; Vernon,
1950).

This situation is hardly surprising if one recognizes
that the interpretation of graphs and the application of
the concept of function to real situations and natural phe-
nomena are usually neglected in mathematics classes. Like
most modeling activities, these complex tasks do not admit
simple well-defined procedural methods for their solution.
Instead, to be worked out successfully, they require a
global understandiﬁg of the underlying situation and the
use of a variety of intuitions and background knowledge.

Students' learning experiences in functional reasoning
and in interpreting graphs constitute an important area of
research in mathematics education. The positive results
obtained in teaching elementary and middle school children
the fundamental principles involved in reading and con-

structing simple graphs and in handling instrumentally
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numerical functions sharply contrast with the profound gif-
ficulties experienced by high school and college students
in solving more complex problems involving graph interpre-
tation and functional reasoning. Mathematics educators need
to identify what may constitute successful learning expe-
riences to deal with the interpretation of complex graphs.
This research was carried out in the belief that further
investigations were needed on students' abilities, concep-

tions, processes, and difficulties in this topic.



CHAPTER 2
THEORETICAL FOUNDATIONS

This chapter presents a view of mathematical thinking
processes that was developed to constitute the general
theoretical background of the study and reviews and
discusses closely related theories about thinking,
understanding, imagery, and intuition. The chapter also
describes the framework developed to study functional

reasoning and graph comprehension.

Mathematical Thinking Processes

Céncepts and conceptual structures may be processed
through step-by-step mental operations or in a more inte-
grated manner. Mental operations may be of various types,
This section describes several aspects of conceptual opera-~
tions and asserts the existence of three fundamental kinds
of reasoning processes in mathematics.

Operations and conceptual structyres, Some conceptual
operations are analogous to mathematical operations, where-
as others have no direct counterpart in mathematics., For

example, relational operations include establishing

7
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conceptual structures are strong and using them may be just
a routine process,

Mathematical reasoning processes. It is possible to
distinguish three fundamental kinds of reasoning in mathe-
matics. They may coexist and interrelate in many problems,
but nevertheless their role is almost always identifiable,
Each kind of reagoning fulfills a different purpose and may
be most appropriate for a specific kind of task, They are:

1. Logical-deductive reasoning, It is used in deduc-
tion and consists mainly of arguments of the "if-then"
form; it depends on propositions previously accepted and on
the exploration of consequences of definitions. Its steps
are well defined, and the concepts manipulated are usually
fairly abstract. Logical-deductive reasoning is fundamental
in the process of validating and organizing mathematical
knowledge and was the main focus of Piaget's (1972;
Inhelder & Piaget, 1955/1958) investigations.

2, Algorithmic reasoning. It consists of sequences of
well-defined steps and is used to solve a whole class of
similar problems. In each step a single, well-defined oper-
ation is made, usually manipulating fairly concrete con-
cepts, Algorithmic reasoning is very powerful in solving
routine problems, although the number of necessary steps
may be very large. This form of reasoning has been brought
to prominence by the development of computer science

(Knuth, 1974).
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global-visual nature, whereas others are mainly analytical-
verbal (Skemp, 1971). Global~visual symbols range from
simple pictures of objects to complex representations in
maps and diagrams. Their apprehension and interpretation is
fundamentally a holistic process. Analytical-verbal symbols
include the spoken and written words of common speech and
the most common algebraic symbols. This kind of symbolism
is processed in a sequential way (Paivio, 1971).

These two kinds of symbols correspond to two modes of
thinking., The operations most used in global-visual rea-
soning are association, substitution, and geometrical
operations. Analytical-verbal thinking makes wider use of
logical, relational, and arithmetical operations.

Graph reading and graph interpretation share common
features as visvally-based tasks. But for successful han-
dling they demand different reasoning processes, Graph
reading can be processed in a procedural manner, that is,
it is possible to set forth a set of directions that apply
to whole classes of problems. Graph interpretation has a
more open-ended nature. It requires the creative involve-
ment of a large number of conceptual structures concerning
the situations represented. Graph interpretation has to be
processed with the intervention of intuitive reasoning.

The procedural perspective of mathematics held by so
many students may partially explain why they tend to do

relatively well in the simpler graph reading tasks but find




13
preoperational, concrete operations, and formal operations.
The factors explaining the development are maturation,
experience, social transmission, and equilibration.

Piaget distinguished two kinds of experience, Physical
experience consists of action upon objects and leads by
abstraction to inferences about the objects, Logical-
mathematical experience leads to the drawing of knowledge
not from the objects themselves but from actions performed
with the objects. This knowledge concerns properties of
actions on the objects and not properties of the objects
themselves. For Piaget (1964a) mathematical deduction be-
gins with logical-mathematical experience and its suitable
combination with symbolization,

Piaget (1964b) claimed that there is a close corre-
spondence between the mathematical structures identified by
the Bourbaki school and the psychological structures of
human intelligence, Piaget studied the psychological struc-
tures by formalizing the operations used by children and
concluded that they were analogous to but much simpler than
the mathematical structures,

The notion of operation played an important role in
this study, but it was used in a broader sense than that of
Piaget. Some psychological operations were regarded as ana-
logues of mathematical operations, but others with no clear

mathematical counterpart were considered as well.
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to self-perpetuation becomes an obstacle to adaptation.
This resistance may be very strong, especially where the
scheme plays a vital role for the individual.

Mathematical concepts neither exist nor can be learned
in isolation from each other. The notion of conceptual
structure is therefore of great importance in modeling
mathematical learning. It played a major role in this

study.

Imagery

Skemp (1971) referred to two kinds of thinking, based
on two different systems of symbolic representation.
Discursive-verbal thinking focuses attention on only one
part of a scheme at a time. This kind of thinking is
especially suited for analytical tasks. Global-visual
thinking“is holistic and concerns the ways in which parts
relate to each other and to the whole., Global-visual
thinking is especially suited for synthetic enterprises,
Skemp suggested a complementary role for these two forms of
language systems, indicating, however, that the socialized
character of our knowledge and our difficulty in external-
izing images may have caused an imbalance in the develop-
ment of our ability to use these two modes of thinking.

In studying the role of visual imagery Piaget and
Inhelder (1971) concluded that images were subordinated to

operations. But they indicated that images constituted a
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The distinction between discursive-verbal and
global-visual thinking played an important role in this
study as it assessed how successful students were in using
both kinds of reasoning in graph-related tasks, Images were
regarded as representing concepts, on equal grounds with
other symbols, and so also as subject to manipulation

through operations,
Intuition

According to Fischbein (1979, 1982) our intelligence
works by interrelating two modes of operating: the intui-
tive and the logical-analytical. At the intuitive level we
think in a global, partly conscious and partly unconscious
fashion. We do not attempt to make explicit all the con-
cepts and schemes that we are using. Instead, in solving a
problem, for example, we put all our capabilities to work,
hoping that the desired connections of ideas will result.
Intuition is a global and compact form of knowledge with a
unique guality of self-evidence that results from. our ap-
prehension of the structure of a given situation.

In Fischbein's view the essential feature of logical-
analytical thinking is its explicitness. Logical-analytical
thinking proceeds at the conscious level using refined sym-
bolic media and can easily be communicated. It has, howev-
er, two essential shortcomings: it proceeds slowly, and it
is not oriented towards action. Also, logical-analytical

thinking develops relatively late in human beings.
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be achieved by combining two components, the logical form
of necessity that is characteristic of mathematical proof
and the internal structural form of necessity that is
characteristic of intuitive acceptance.

In school the process of refining and correcting one's
intuitions is usually disregarded or driven in a haphazard
manner, Fischbein (1973) pointed out that intuitions are
not developed by blind drill and practice nor by explana-
tions or short learning exercises. He claimed that they
"can be elaborated only in the frame of practical situa-
tions as a result of the personal involvement of the learn-
er in solving genuine problems raised by these practical
situations” (1982, p. 12). An important element of this
process, according to Fischbein, is the reassessment by
students of the elements of their primitive experience in
the l1ight of the framework provided by a rigorous mathe-
matical dnterpretation.

Fischbein asserted that teaching may relate to the
students' initial intuitions in one of three ways: (a) it
may be in accordance with them, in which case there is
immediate acceptance and reinforcement; (b) it may be in
sharp opposition to the students' intuitions, in which case
it will be rejected or ignored; (c) it may be in some sense
“neutral,” neither opposing nor favoring previous intui-
tions, In this last case the intuitions have to be devel-
oped and transformed into acquired knowledge or else they

will remain precarious and ineffective. The case of total
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a well-defined way on the value taken by another variable.
Graph comprehension refers to a wide spectrum of processes,
including constructing graphs and obtaining quantitative
and qualitative information from graphs,

The framework through which students' ability to per-
form tasks in functional reasoning and graph comprehension
was analysed has three aspects: (a) graph reading, (b)
graph construction, and (c) graph interpretation, Each of
these aspects is discussed in detail below.

Graph readina. Graph reading corresponds essentially
to the understanding and use of the basic conventions and
principles of the Cartesian representation. The focus is on
the coordinates of single points, Graph reading involves
for the most part procedural tasks, that is, tasks in which
students can be instructed to follow a sequence of steps
that, if carried out correctly, leads to the desired goal.
The graphs may be abstract or they may represent real-life
sitvations. Specifically, graph reading refers to tasks
that may involve identifying the coordinates of points,
indicating the value of a function corresponding ?9 a given
value of the abscissa, indicating the abscissa correspond-
ing to a given value of a function, identifying the co-
ordinates of points where the graphs of two functions
intersect, and comparing the values of a function for
distinct given abscissas.

Graph construction, Graph construction refers to a
wide range of tasks such as identifying the variables
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problems. It may require an extensive use of intuitive
reasoning, It constitutes the most complex and for the
students the most difficult aspect of graph comprehension,
Interpretation of variation in variation involves notions
related to rates of change, such as fast and slow change,
linear and nonlinear change, continuous and discontinuous
change, smooth and nonsmooth change. Tasks addressing this
aspect of graph interpretation may include comparing rates
of change, identifying graphs representing complex patterns
of variation, describing features of a situation repre-
sented by nonlinear graphs, and using curvilinear inter-
polation and extrapolation.

These three aspects of graph comprehension--graph
reading, graph construction, and graph interpretation--are
certainly interrelated as components of graphing ability,
but they are viewed in this framework as relatively inde-
pendent processes. Graph reading may be carried out with
little reference to the situational context, whereas graph
construction requires the student to work from a situation
to a graph-and graph interpretation requires the student to
relate features of the graph to features of the situation,
The interpretation of variation is ordinarily processed
using concepts closely related to the situation, whereas
the interpretation of variation in variation is thought of

as being processed using more abstract and elaborated

concepts.




CHAPTER 3

REVIEW OF RESEARCH

Several studies concerning the concept of function
have been undertaken since the mid-1960s, and studies
dealing with graph comprehension have been conducted since
the beginning of the 1920s. These studies covered a wide
range of grade levels from kindergarten through college.
Reviews focusing on the relative effectivness of different
kinds of graphical materials were provided by Malter (1952)
and Macdonald-Ross (1977). Using the framework of this
study, the present chapter reviews research related to

functional reasoning and graph comprehension.

Research on Functional Reasoning

The concept of function started attracting attention
of researchers in mathematics education in the late 1960s
and early 1970s. A dominant research paradigm at that time
was the search for stages in the process of forming a con-
cept (Andersen, 1971; Lovell, 1971; Orton, 1970; Piaget,
Grize, Szeminska, & Bang, 1968; Thomas 1971, 1975).

24
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were greater than had been commonly thought by mathematics
educators (Herscovics, 1982}).

More recently, another strand of research has devel-
oped that is aimed at the identification of students' abil-
ities and difficulties in dealing with functions and at the
study of students' conceptions and psychological images of
functions,

The following pages review results, findings, and
implications that can be drawn from the studies regarding
students' ideas of variables and functional dependence,

variation, and variation in variation,
Variables and Functional Dependence

In simple real-life contexts involving natural numbers
and proportionality, elementary school students do not seem
to have difficulty with the notion of the uniqueness of
images (Ricco, 1982). However, it appears that older stu-
dents who are taught about functions in a formal way, just
emphasizing abstract  correspondences and disregarding the
stimulating role of the underlying contexts, may fail to
understand the idea of functional dependence. For example,
Thomas (1971) was puzzled by his observation that students
in the Secondary School Mathematics Curriculum Improvement
Study were able to handle instrumentally routine exercises
but could not distinguish very simple instances of func-

tional and nonfunctional relationships.
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of the meaning of the term "dependence" in everyday lan-
guage.

Indeed, Bang (Piaget, Grize, Szeminska, & Bang, 1968)
suggested that it was easier for young children to grasp
functional dependencies of a qualitative character when
these dependencies related to situations involving a causal
consequence, But from this primitive idea of dependence,
children still seem to have a long way to go until they
establish well-defined rules of covariation between given
variables and develop the ability to use these rules to
predict the results under new experimental conditions.

The notion of variable., Closely related to the diffi-
culties that sometimes exist with the notion of dependence
are difficulties with the notion of variable. Many young
students often seem to lack a workable concept of variable,
not going beyond the notion of “"unknown" (Kuchemann, 1978,
1981; Marnyanskii, 1965/1975). Older students often view a
variable--as did 18th-century mathematicians--as something
running through an unlimited number of values rather than
as a general representative of a given set (Marnyanskii,
1965/1975). In word problems, college students were found
by Rosnick (1982) to frequently fail to assign variables to
well-def ined referents, letting them instead represent an
undifferentiated conglomerate of meanings.

A quite interesting feature of students' thinking is
that they do not seem to relate in a spontaneous way the

ideas of variable and set. Marnyanskii (1965/1975) found
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students handled the situation in a pointwise manner,
referring to the points with integer abscissas,

It would appear that the notion of functional depen-
dence is essentially constructed on the basis of relation-
ships imbedded in situational contexts. Many of these are
commonly modeled using continuous variables. Therefore, the
nature of the students' conceptual difficulties in handling
such variables deserves closer attention.

Conceptual structure of functional dependence. If some
students initially experience a number of difficulties with
the idea of dependence, many of them later seem to adopt
the notion of a well-regulated dependence as the essence of
the concept of function. Research conducted by Wagner
(1977, 1981) showed that many students were easily misled
into error by the symbols used to represent the variables
but resorted frequently to a strategy of "searching-for-
the-rule® as a way of coping with unfamiliar problems.
Vinner (1983) showed that even when taught an abstract
definition of a function, 10th- and 1llth-grade students
worked hard to f£ind the "algebraic rules"™ that would sup-
posedly legitimize some correspondences as "true func-
tions," For some students a function should correspond to
a single rule, but others were willing to accept the idea
that a function could be defined by different rules in
distinct parts of its domain.

Even in mathematically more mature subjects the con-

cept image may be rather distinct from the concept
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student did not understand that the values of a function
"could vary only with different argument values fand that]
the values of a function vary depending on the change in
the values of the argument™ (p. 150-151). Janvier (1978)
also reported that many students had difficulties with the
concepts of change, growth, and increase.

Problems in adequately understanding the nature of
variables may also interfere with the notion of variation.
For example, Janvier (1981) reported that many students
indicated as the point where a function started increasing
not the value corresponding to the minimum but the next
whole value. Complex forms of variation may also disturb
the understanding of the relevant variables, Lochhead
(1980) noted the tendency to confuse variables when a rate
of change was involved or when there was interference from
pictorial representations., Trowbridge and McDermott (1980,
1981) showed that in the interpretation of physical exper-
iments students easily confuse position and velocity or
velocity and acceleration.

Achievement results. Ruchemann found test items re-
quiring an understanding of how the values of a variable
expression change to be rather difficult, even for 15-year-
olds (less than 10% correct responses), and exceedingly
difficult for younger students.

Sometimes students demonstrate some intuitive under-
standing of the varjation represented in a certain question

but cannot express it in abstract terms. For example, in a
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basis for functional reasoning is laid by 12 or 13 years of
age. However, data on students' achievement also suggest
that this potential may not be achieved in formal tasks
that are not experimentally based. Bang's research also
suggests that conceptual problems in other areas of math-
ematics may hinder functional reasoning. For example, it
seems likely that a working familiarity with the rational
number system may be an important prerequisite to handling
successfully many functional situations.

Linearity. Students seem to develop and make wide use
of a conceptual structure in which all functional relation-
ships have a linear form, even when presented with other
kinds of functions during regular instruction., It would
appear that linear functions, besides being the most widely
used functions in mathematics and science courses, contain
an inherent simplicity that makes them very appealing to
the humah mind.

Markovits, Eylon, & Bruckheimer (1983) asked ninth
graders to give examples of functions satisfying certain
constraints both in algebraic and graphical representations
and in pure mathematical and scientific contexts. Most of
the responses were restricted to linear (or plecewise lin-
ear) functions, and many students did not recognize that
nonlinear functions could also be solutions to the same
problems. Markovits et al. concluded that "“students have a
mostly linear image of functions, which is not influenced,

either by the type of representation, or by the kind and by
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reasoning and also has a striking historical analog. Line-
ar variation and proportions pervaded most ancient and me-
dieval mathematical thought and were the embryonic form of
functional thinking that were finally extended to a gen-
eral concept of function by 17th- and 18th-century mathe-
maticians,

Intuition and geometric represepntations. Markovits,
Eylon and Bruckheimer (1983) indicated that some students,
when asked to give their answers in algebraic terms, trans-
lated the problems into a graphical form and used geomet-
rical explanations in their answers., This response seems to
suggest that on some complex tasks the geometric intuition,
although still not fully developed, may already be playing
an important role in the development of the reasoning of
some students,

Conceptual structure of variation. As soon as students
start grasping the idea of variation, they have a common
tendency to regard as functions only things that vary
(Markovits, Eylon, & Bruckheimer, 1983; Marnyanskii, 1965/
1975), in a perspective reminiscent of the Leibnitzian view
of constants and variables as mutually exclusive entities.
However, most students appear to not have difficulty in
adopting later a more general view (accepting constant
functions) as a natural generalization of the patterns of
linear variation,

Goldberg's (1962/1975) research seems to support the
jidea that the study of linear variation in an algebraic
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another thing to understand regularities that constitute
patterns of rate of change,

Rate of change. Trowbridge and McDermott (1980) re-
ported that it was common for students untrained in physics
to view speed as an imprecise association between distance
and time and not as a ratio between these two quantities.
When the concepts involved were more abstract, as in think-
ing of acceleration as the instantaneous rate of change of
velocity with respect to time, Trowbridge and McDermott
(1981) indicated that the conceptual difficulties experi-
enced by the students appeared to be very persistent,

Lochhead (1980) pointed out the difficulties that
college students have in using an algebraic concept of rate
of change to solve word problems. He noted that students
commonly confuse the amount of a quantity with its rate of
change. The research of Trowbridge and McDermott (1980)
also illustrates the very common tendency to confound
amount and rate in the context of simple kinematic exper-
iments.

Janvier (1980) asked students-for the greatest in-
crease of a function represented in a Cartesian graph. The
students very often did not search for the points (or
intervals) with greatest slope but interpreted "largest
‘increase™ as "being large™ or as "starting to increase."
Janvier ascribed these incorrect responses to attraction by
high values (that is, focusing on the upper part of the

curve) or attraction by low values (focusing on the lower
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again and again strikingly supported by the research on
functions, which has been undertaken by researchers using
different methodologies and working within different theo-
retical orientations,

The investigations carried out by Pjaget and his asso-~
ciates (1968) support the idea that the intuitive basis for
dealing with functions involving direct and inverse propor-
tionality may be developed in 12-year-olds provided that
they are given adequate physical experiences upon which to
build the relevant concepts regarding the variables and the
relationships involved. The failure of many school programs
to develop an understanding of such notions at this age or
even at a later age may be found in the conventional ways
that schools tend to operate--emphasizing abstract repre-
sentations, routine computations, and teacher talk, instead
of promoting active involvement of the studente in the
construction, development, and application of mathematical
ideas.

Goldberg's (1962/1975) teaching experiment seems to
suggest that students' understanding of the notion of _
functional dependence can be stimulated by a mathematically
rich foundation that relates to the conceptual structures
the students have already acquired and that promotes the

development of their intuitions.
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Graphs do not seem to be a difficult subject to teach
effectively at the elementary and middle school levels
(Bamberger, 1942; Herrmann, 1976; Johnson, 1971; McKenzie,
1983; Riggs, 1976; Strickland, 1983; Thorp, 1933). However,
there is a lack of consensus about the grades in which to
introduce different kinds of graphs. The studies that have
dealt with relative instructional effectivness and optimal
grade blacement (Goetsh, 1936; Mathews, 1926; Thomas, 1933;
Washburne, 1927a, 1927b; Wrightstone, 1936) have reported
conflicting results for the most part (Malter, 1952).
Reviewing these studies, Weintraub (1967) suggested a "de-
velopmental sequence" that introduced--successively--picto-
graphs, circle graphs, bar graphs, and finally line graphs,
whereas Appel (1973) recommended that all types of graphs
should be introduced as early as kindetéarten.

Other studies compared different forms of presentation
of data to adult audiences. Questions involving guantita-
tive aspects produced lower performance in general when
presented by means of line graphs than when presented by
means of tables or other types of graphs (Cag}et,‘1947;
Culbertson & Powers, 1959; Vernon, 1946). These studies
indicated that if specific values are to be read by the
students from line graphs, dealing with scales and reading
accuracy may be serious problems. Although the presence of
coordinate rulings may be a factor in increasing accuracy,
denser or wider rulings do not seem to make much difference

(Carter, 1947).
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Graph Interpretation

Line graphs are the form of representation of data
usually selected when ﬁhe purpose is to study complex
trends, Indeed, Shutz (1961) found that performance in
situations involving trends was better with line graphs
than with bar graphs. However, the interpretation of graphs
has been found to be generally very difficult for most stu-
dents, Moderate to very low performance has consistently
been found on questions involving aspects such as choosing
the appropriate graph to represent a given situation,
describing relationships between variables, interrelating
the information from several graphs, and interpolating and
extrapolating information (Carpenter et al., 198l1; Janvier,
1978; Shaw, Padilla, & MacKenzie, 1983).

Janvier (1978) described graph interpretation as a
process of progressive integration of the various pieces of
information conveyed by the graph with the students' back-
ground knowledge of the sjituation., Interpretation, then,
would consist of the association of global features of the
graph with the facts of the situvation., He claimed that
verbal formulations played a critical role in the processes
of translation between the situations and the graph, even
when the student worked from a diagram to the graph.

A major problem concerning the interpretation of
graphs seems to be posed by the complexity of the situa-

tions involved, including the nature of the data presented
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reported that in questions on distance/time graphs, which
in England normally receive some attention in most schools,
a considerable number of students had difficulties when the
graph could be visually misleading. Janvier (1978, 1979)
indicated that sometimes students mix together symbolic and
pictorial interpretations of the same graph.

The interpretation of graphs to derive specific quan-
titative information also seems to pose serious problems,
Carter (1947) noted that Air Force pilots and college stu-
dents were very slow and inaccurate in interpolation prob-
lems. The rate of change seems to pose very hard conceptual
difficulties for many students, who easily confuse inter-
vals of greatest increase and intervals of greatest value
(Janvier, 1978; Bell & Janvier, 1981). Comparisons of rates
of change also appear to present problems to students,
being more difficult than reading or comparing simple
values (Herrmann, 1976; Janvier, 1978; Price, Martuza, &
Crouse, 1974).

Many students seem to consider a graph as a mere
source of poihtuise information. This has been found for
middle school students (Janvier, 1978) and for college stu-
dents (Konshak & Monk, 1976). Besides, students sometimes
seem to have unexpected ideas and misconceptions about
graphs, For example, Karplus (1979) reported that some
students considered that a graph representing the behavior
of living organisms could not be composed of straight

lines. Other students thought that straight lines were
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misleading graphs. Johnson (1971), on the othat hand,
repor ted correlations between graph reading and spatial
ability from .43 to .45 and between graph reading and
perceptual speed from .32 to .54.
It appears that the proportion of the variance in
students' graph comprehension that each of the previous

variables accounts for is significant but not very large.

Conclusion

Previous research seems to indicate that the funda~
mental principles involved in reading Cartesian graphs can
indeed be learned by elementary and middle school children
and also that a deficient understanding of the geometrical
representation of rational and real numbers may induce dif-
ficulties in handling continuous variables. These Aiffi-
culties become particularly evident in graph construction
tasks,

The interpretation of graphs seems to be a more com-~
plex and difficult process than just reading graphs. To the
complexity of representing processes of change is added the
complexity of the situations involved. Students appear to
use graphs mainly as a source of pointwise information,
although sometimes they view them in a pictorial manner.

As a result, they tend to do very poorly in deriving both
qualitative and quantitative interpretive information from

graphs,
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"intrinsically accurate," and so the best interpolation

strategy to use would always be linear interpolation.

Cognitive or Achievement Variables

Some investigators studied the correlations between
aspects of graph comprehension and cognitive variables such
as general intelligence, developmental stage, or achieve-
ment variables such as arithmetic and reading ability.

Using IQ tests, Culbertson and Powers (1959), Herrmann
(1976) , Johnson (1971), and Riggs (1976) reported correla-
tions between graph reading and general intelligence rang-
ing from .43 to .62. With instruments to assess level of
cognitive development, McKenzie (1984) and Padilla, Okey,
and Dillashaw (1983) found correlations between graphing
ability and developmental stage ranging from .36 to .77.
Arithmetical or mathematical ability is also correlated
with graph comprehension. Culbertson and Powers (1959),
Curcio (1982), and Herrmann (1976) found correlations
ranging from .54 to .73. Reading ability was found by
Curcio (1982), Herrmann (1976), and Johnson (1971) to
correlate between .60 and .70 with graph comprehension.

The relation of graph comprehension to spatial abil-
ities is not clear. Kerslake (1977) claimed that students
who are strong visualizers have more difficulty than other

students in interpreting some of the most potentially
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and the concepts and technical terms used (Janvier, 1978;
Konshak & Monk, 1976; Vernon, 1953). A student may be able
to answer specific questions about a graph, but that fact
does not guarantee a global understanding of the situation
(Vernon, 1950), Some familiarity with features of the un-
derlying situation may be a decisive factor in helping stu-
dents make correct interpretations (Janvier, 1978). Janvier
{1978; Bell & Janvier, 1980) also noted the perturbing in-
fluence of situational distractors in the process of graph
interpretation. That is, previous experience with the sit-
uation can interfere with the interpretation of abstract
features of a graph.

A number of other investigators have identified dif-
ficulties in setting up a correspondence between situations
and graphs. Woodward and Byrd (1984) related how, in con-
structing stories to explain graphs, students often dis-
regarded important aspects of the graphs. Lochhead (1383)
indicated the difficulties of college students in identify-
ing velocity/time and acceleration/time graphs describing
simple motions. Karplus (1979) reported that the responses
of many students to his tasks did not ref}ect reasoning
about the situation that had yielded the data. Rather, most
students who attempted a response had followed some proce-
dure that they supposedly recalled from their classes.

Students often attempt to use a graph in a very direct
manner as a pictorial representation of a situation (Jan-

vier, 1978; Konshak & Monk, 1976). Kerslake (1977, 1981)
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Graph Construction

Wavering (1981, 1983) investigated the thought
processes that middle and high school students used in
graphing data. Wavering sought to validate a developmental
sequence for graphing, involving (a) the ordering of data,
(b) the scaling of the axes, and (c) the recognition of a
relationship from the graphed data. Some students were
unable to identify a relation underlying given(data just
because of difficulties in plotting the po;nts, which in
some tasks was quite a demanding problem because of a large
and unusuval range of data.

An unquestionable finding of Wavering's investigations
is that graph construction may pose quite serious problems
for high school students. Shaw, Padilla, and McKenzie
(1983) also found that choosing appropriate scales was one
of the most difficult aspects of a test of graph compe-
tence. Coward (1981) reported that many junior college
students, although able to construct acceptable scales to
represent ordered pairs, considered this an awkward task.

The implications of the use of graph paper in the
construction of graphs was addressed in Wavering's (1983)
study. Graph paper seemed to help middle school students
order data and scale axes but had no effect on the

performance of high school students.
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Research on Graph Comprehension

Previous research has investigated several aspects of
graph reading, construction, and interpretation. Relation-
ships between performance on graph comprehension and
cognitive abilities or school achievement have also been

studied from a correlational viewpoint.

Graph Reading

Working with simple graphs seems to be a suitable
activity for the elementary and middle school levels, At
some stage in their cognitive development, young children
begin to understand the principles of Cartesian represen-
tation (Piaget, Inhelder, & Szeminska, 1960).

Reading graphs and plotting points have consistently
been identified as the aspects of graph comprehensicn with
the highest levels of success (Bestgen, 1980; Carpenter et
alt, 1981; Coward, 1981; Kerslake, 1977, 198l1; Price,
Martuza, & Crouse, 1974; Shaw, Padilla, & McKenzie, 1983),
However, difficulties in dealing with scales seem to trou-
ble in many high school students and adults. These diffi-
culties are probably related to a deficient understanding
of the systems of rational and real numbers and their
representation on the number line and appear not to be
susceptible to easy remediation (Sullivan, 1982; Vergnaud &

Errecalde, 1980).
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part of the curve). Furthermore, Janvier claimed that thesc
attractions can be strong or weak depending on whether the
attention is directed only at the very extremes or com-
prises an interval from the point of largest increase to
the extremes,

Smoothness,. The notion of smoothness is associated
with the mathematical ideas of continuity and differentia-
bility. This notion and the idea that natural phenomena are
often described by smooth functions seem not to be grasped
by many students, even those who have studied functions in
previous mathematics courses (Karplus, 1959).

However, when the notion of smoothness is grasped, it
tends to play an overriding role. If a graph does not look
*sufficiently reasonable," many students think that it
cannot represent a function (Vinner, 1983). This resistance
may be regarded as similar to that of many mathematicians
in the past to the idea of discontinuous and nondifferen-
tiable functions as legitimate mathematical entities and
suggests that it is another natural step that studehts need
to take in order to build a more general and abstract con-

cept of function.

Conclusion

The idea that the difficulties that students have to
overcome are similar to the difficulties that the great

mathematicians experienced in the past (Kline, 1970) is
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setting may be appropriate for eighth graders, despite the
difficulties that it presents, Janvier's (1978) study
suggests that linear variation represented in tables and
graphs can also be understood by students at about the same
grade level and can be meaningfully integrated into a sin-
gle conceptual structure for linear variation. But an open
question is how resistant the students' fixation on the
pattern of linearity is and what experiences may lead them

to construct wider and more flexible conceptual structures.

Variation in Variation

Variation in variation, and in particular the rate of
change, seems to pose difficult conceptual problems for
many students. This difficulty is probably related to the
fact that students appear to develop and make frequent use
of a conceptual structure that refers to a constant form of
variation, namely linear variation.

Bang (Piaget, Grize, Szeminska, & Bang, 1968) reported
- that in very simple situations some 12-year-olds (but not
younger children) were sensitive to nonlinear variation.
For example, some children realized that there was a
smaller difference between sticks 10 and 25 cm long than
between sticks 25 and 50 cm long. But it is one thing to
grasp irregularities in the variation that challenge the

conceptual structure of “universal proportionality,® and
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the number of constraints, and also not by the context" (p.
276) . Karplus (1979) proposed to 6th through 12th graders a
series of "functional puzzles” in which smooth nonlinear
functions would be appropriate models to use. Most students
showed either a complete absence of feeling for the prob-
lems and guessed the answers or used straightforward linear
interpolations. Only a small minority (less than 8% of 6th
graders to less than 30% of the 12th graders) used curvili-
near interpolations.

The predominance of a conceptual structure involving
direct proportional reasoning with a positive constant of
proportionality may be traced in the reactiogs of some
children participating in Bang's (Piaget, Grize, Szeminska,
& Bang, 1968) investigations. In a problem implying a re-
ciprocal compensation of two quantities (an increase in one
implying a decrease in the other), young children were una-
ble to grasp the relationship and seemed fixated on the
idea that larger implies larger and smaller implies
smaller.

Linearity appears to be, in some instances, more than
just a geometric reasoning pattern. For example, Wenger and
Brooks (1984) indicated that a high percentage of college
precalculus students tend to use the additive linearity
property [f(at+b) = f(a) + £(b)] with nonlinear functions
like the power function.

The role played by linear variation in students' con-

ceptual structures is closely related to proportional
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National Assessment problem (Carpenter et al., 1981) in
which students were asked to find a missing number in a
table according to a linear pattern, only 35% of the 13-~
year-olds answered the item correctly; only 3% were then
able to express the relationship by an algebraic equation,

The intuitive basig for functional reasoning. The
problems just described refer to functions as normally
encountered in a school setting. Working with children in
the context of experimentation with simple materials, Bang
(Piaget, Grize, Szeminska, & Bang, 1968) concluded that
before 7 or 8 years of age children do not relate the rel-
evant variables and do not grasp the sense of the vari-
ation., Bang suggested a developmental sequence in which
between 8 and 12 years of age children become aware of the
qualitative and quantitative aspects involved in simple
processes of variation., Ricco (1982) presented elementary
school children simple proportionality tasks in real-life
contexts. She noted that first the students were able to
grasp qualitative aspects of the relationships involved
(uniqueness of the images and monotonicity), next. the stu-
dents used additive strategies to find missing images, and
finally they identified and used the constant multiplica-
tive coefficient.

There is a gap between the results obtained by a pa-
tient interaction with children on a one-to-one basis and
the outcomes of the process of regular schooling., The stud-

ies by Bang and Ricco seem to suggest that the intuitive
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definition, Dreyfus and Vinner (1982) found that many math-
ematics teachers and college mathematics majors were ablc
to give formal definitions of a function but indicated that
“these concept definitions remained very often inactive at
decision making moments when (sometimes wrong) concept
images took over" (p. 17).

These findings support the view that for most students
the construction of a conceptual structure of functional
dependence is related much more to the examples that these
students are used to working with than to Phe definitions
that they are given. This conceptual structure, in which
well-requlated functional rules play a major role, appears
to be--as it was for the mathematicians who contributed to
the historical development of the notion of function--a
"natural® step in the process of building a more general
concept where the emphasis is on the correspondences (or on

the ordered pairs) and not on the rules,

rariati

Some students seem to be uneasy with the idea of vari-
ation, They have difficulty in distinguishing value and
variation., In Goldberg's words: "No matter what and no mat-
ter where it occurs, students identify a plus sign with an
increase and a minus sign with a decrease® (p. 148). Such
students tend to focus on particular values and disregard

the process of variation. Goldberg observed that often the
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Table 4

Raw Score Means and standard Deviations (in Parentheses)
on the Subtests by Each Group

Graph variation variation
Reading in variation

(10 items) (13 items) (4 items)

Eleventh Graders

Nonalgebra 7.3 6.9 1.6
n=176 (1.7) (2.8) (1.1)
Algebra 8.7 10,0 2.4
n =103 (1.2) (2.3) (1.1)

Preservice Teachers

Elementary 8.4 10.4 2.1
n = 52 (1.5) (2.0) (.9)
Secondary 9,1 11.7 2.4

n=31 (.9) (1.4) (1.0)
























































































































































































































