At a time when university mathematicians are making important decisions about the school mathematics curriculum, perhaps it is appropriate to hear from Professor George Polya. Polya (1887–1985) was a distinguished mathematician and professor at Stanford University who made important contributions to probability theory, number theory, the theory of functions, and the calculus of variations. He was the author of the classic works *How to solve it* [1], *Mathematics and plausible reasoning* [2], and *Mathematical discovery* [3], which encouraged students to become thoughtful and independent problem solvers. He was an honorary member of the Hungarian Academy, the London Mathematical Society, and the Swiss Mathematical Society, and a member of the (American) National Academy of Sciences, the American Academy of Arts and Sciences, and the California Mathematics Council, as well as a corresponding member of the Académie des Sciences in Paris.

The essay that follows is a slightly edited transcript of a videotape lecture that Professor Polya presented to my in-service and pre-service mathematics education students in the late 1960s. I have not corrected Polya’s Hungarian-accented language.

Part 1

I wish to talk to you about the teaching of mathematics in the primary school. In fact my talk will consist of two parts. In the first part I will talk about the aims of teaching mathematics in the primary school. And in the second part, how to teach it.

I must confess that I am talking about these things as an outsider. I was always interested in teaching, but most of my time, about half a century, I taught in the university or various universities. And in the last fifteen years, I was mainly concerned with teaching on the high school level. Thus I am talking to you as an outsider, but you may find one or two points in what I am saying that may be useful to you in your profession.

What is the aim of teaching mathematics in the primary school? It is better to consider the most general question. What is the aim of the schools? And the better question is: What do people generally think is the aim of the schools? The first is the point of view of the parents. Your neighbour Mr. Smith has a son Jimmy. He is against Jimmy being a dropout. He says that if Jimmy drops out from school he will never get a right job. So the aim of the school according to Mr. Smith and all the other Mr. Smiths in the general public is to prepare for a job, to prepare the kids to earn a living. But what is the point of view of the community? It is the same. The community, the country, the state, and the city all want people to earn a living and pay taxes and not live on public assistance. So the community also wants the school to prepare the young people to have a job.

If the parents think a little farther, and the community thinks a little farther, the aim is somewhat changed. Reasonable parents, a reasonable Mr. Smith, wants that his son Jimmy should have a job for which he is well fitted. He will earn more and feel happier. By the way, this is also the aim of the community – that you have jobs on one side and people on the other side and you have to assign to people such jobs that totally they are best fitted, that they produce the greatest output. Or even better, that totally the sum of the happiness should be a maximum. What can the school do for that? The point is that when the kid comes to the school you don’t know yet what job will come later,
and you don’t know for what job he is well fitted, he is best fitted. So what should we do? We should prepare the youngsters so that they can choose between all possible jobs. They must have a view of the whole world around them to recognize for which jobs they will be well fitted. You can express it many ways. I like the following expression: the schools should develop all the interior resources of the child. We have therefore two kinds of aims in the schools. We have good and narrow aims. The schools should turn out employable adults – adults who can fill a job. But a higher aim is to develop all the resources of the growing child in order that he can fill in the job for which he is best fitted. So the higher aim, I express it so, is to develop all the inner resources of the child.

Now what about mathematics teaching? Mathematics in primary schools has a good and narrow aim and that is pretty clear. An adult who is completely illiterate is not employable in a modern society. Everybody should be able to read and write and do some arithmetic, and perhaps a little more. Therefore the good and narrow aim of the primary school is to teach the arithmetical skills – addition, subtraction, multiplication, division, and perhaps a little more. Everybody should have an idea of how to measure lengths, areas, volumes. This is a good and narrow aim of the primary school – to transmit this knowledge – and we shouldn’t forget it.

We have therefore two kinds of aims in the schools. Therefore, we have good and narrow aims. The schools should turn out employable adults – adults who can fill a job. But a higher aim is to develop all the resources of the growing child in order that he can fill in the job for which he is best fitted. So the higher aim, I express it so, is to develop all the inner resources of the child.

Now what about mathematics teaching? Mathematics in primary schools has a good and narrow aim and that is pretty clear. An adult who is completely illiterate is not employable in a modern society. Everybody should be able to read and write and do some arithmetic, and perhaps a little more. Therefore the good and narrow aim of the primary school is to teach the arithmetical skills – addition, subtraction, multiplication, division, and perhaps a little more. Everybody should have an idea of how to measure lengths, areas, volumes. This is a good and narrow aim of the primary school – to transmit this knowledge – and we shouldn’t forget it.

However, we have a higher aim. We wish to develop all the resources of the growing child. And the part that mathematics plays is mostly about thinking. Mathematics is a good school of thinking. But what is thinking? The thinking that you can learn in mathematics is, for instance, to handle abstractions. Mathematics is about numbers. Numbers are an abstraction. When we solve a practical problem, then from this practical problem we must first make an abstract problem. Mathematics applies directly to abstractions. Some mathematics should enable a child at least to handle abstractions, to handle abstract structures. Structure is a fashionable word now. It is not a bad word. I am quite for it. But I think there is one point which is even more important. Mathematics, you see, is not a spectator sport. To understand mathematics means to be able to do mathematics. And what does it mean doing mathematics? In the first place it means to be able to solve mathematical problems. For the higher aims about which I am now talking are some general tactics of problems. To have the right attitude for problems and to be able to attack all kinds of problems, not only very simple problems which can be solved with the skills of the primary school, but more complicated problems of engineering, physics and so on which will be further developed in the high school. But the foundations should be started in the primary school. And so I think an essential point in the primary school is to introduce the children to the tactics of problem solving. Not to solve this or that kind of problem, not to make just long divisions or some such thing, but to develop a general attitude for the solution of problems. Such tactic is very important. We have therefore two kinds of aims in the schools. We have good and narrow aims.

The schools should develop all the interior resources of the child. They must have a view of the whole world around them to recognize for which jobs they will be well fitted. You can express it many ways. I like the following expression: the schools should develop all the interior resources of the child. And the part that mathematics plays is mostly about thinking. Mathematics is a good school of thinking. But what is thinking? The thinking that you can learn in mathematics is, for instance, to handle abstractions. Mathematics is about numbers. Numbers are an abstraction. When we solve a practical problem, then from this practical problem we must first make an abstract problem. Mathematics applies directly to abstractions. Some mathematics should enable a child at least to handle abstractions, to handle abstract structures. Structure is a fashionable word now. It is not a bad word. I am quite for it. But I think there is one point which is even more important. Mathematics, you see, is not a spectator sport. To understand mathematics means to be able to do mathematics. And what does it mean doing mathematics? In the first place it means to be able to solve mathematical problems. For the higher aims about which I am now talking are some general tactics of problems. To have the right attitude for problems and to be able to attack all kinds of problems, not only very simple problems which can be solved with the skills of the primary school, but more complicated problems of engineering, physics and so on which will be further developed in the high school. But the foundations should be started in the primary school. And so I think an essential point in the primary school is to introduce the children to the tactics of problem solving. Not to solve this or that kind of problem, not to make just long divisions or some such thing, but to develop a general attitude for the solution of problems. Such tactic is very important. We have therefore two kinds of aims in the schools. We have good and narrow aims.

The schools should develop all the interior resources of the child. They must have a view of the whole world around them to recognize for which jobs they will be well fitted. You can express it many ways. I like the following expression: the schools should develop all the interior resources of the child. And the part that mathematics plays is mostly about thinking. Mathematics is a good school of thinking. But what is thinking? The thinking that you can learn in mathematics is, for instance, to handle abstractions. Mathematics is about numbers. Numbers are an abstraction. When we solve a practical problem, then from this practical problem we must first make an abstract problem. Mathematics applies directly to abstractions. Some mathematics should enable a child at least to handle abstractions, to handle abstract structures. Structure is a fashionable word now. It is not a bad word. I am quite for it. But I think there is one point which is even more important. Mathematics, you see, is not a spectator sport. To understand mathematics means to be able to do mathematics. And what does it mean doing mathematics? In the first place it means to be able to solve mathematical problems. For the higher aims about which I am now talking are some general tactics of problems. To have the right attitude for problems and to be able to attack all kinds of problems, not only very simple problems which can be solved with the skills of the primary school, but more complicated problems of engineering, physics and so on which will be further developed in the high school. But the foundations should be started in the primary school. And so I think an essential point in the primary school is to introduce the children to the tactics of problem solving. Not to solve this or that kind of problem, not to make just long divisions or some such thing, but to develop a general attitude for the solution of problems. Such tactic is very important. We have therefore two kinds of aims in the schools. We have good and narrow aims.
The work that went into the research, production and preparation of this document has to be supported somehow.

ATM receives its financing from only two principle sources: membership subscriptions and sales of books, software and other resources.

Membership of the ATM will help you through

- Six issues per year of a professional journal, which focus on the learning and teaching of maths. Ideas for the classroom, personal experiences and shared thoughts about developing learners’ understanding.
- Professional development courses tailored to your needs. Agree the content with us and we do the rest.
- Easter conference, which brings together teachers interested in learning and teaching mathematics, with excellent speakers and workshops and seminars led by experienced facilitators.
- Regular e-newsletters keeping you up to date with developments in the learning and teaching of mathematics.
- Generous discounts on a wide range of publications and software.
- A network of mathematics educators around the United Kingdom to share good practice or ask advice.
- Active campaigning. The ATM campaigns at all levels towards: encouraging increased understanding and enjoyment of mathematics; encouraging increased understanding of how people learn mathematics; encouraging the sharing and evaluation of teaching and learning strategies and practices; promoting the exploration of new ideas and possibilities and initiating and contributing to discussion of and developments in mathematics education at all levels.
- Representation on national bodies helping to formulate policy in mathematics education.
- Software demonstrations by arrangement.

Personal members get the following additional benefits:

- Access to a members only part of the popular ATM website giving you access to sample materials and up to date information.
- Advice on resources, curriculum development and current research relating to mathematics education.
- Optional membership of a working group being inspired by working with other colleagues on a specific project.
- Special rates at the annual conference
- Information about current legislation relating to your job.
- Tax deductible personal subscription, making it even better value

Additional benefits

The ATM is constantly looking to improve the benefits for members. Please visit www.atm.org.uk regularly for new details.

LINK: www.atm.org.uk/join/index.html