Um pouco de história da Fórmula de Bhaskara

 

 

As referências mais antigas sobre a resolução de problemas envolvendo equações do segundo grau foram encontradas em textos babilónicos escritos há cerca de 4 000 anos atrás.

Embora os babilónios tivessem conseguido resolver muitos problemas matemáticos envolvendo equações quadráticas, cada problema era resolvido para aquele caso particular e sua solução era uma espécie de receita prática, que não especificava nem a sua fórmula geral (se houvesse), nem o modo como a solução tinha sido obtida. Embora essas "receitas" , quando aplicadas a problemas do segundo grau, conduzissem de forma natural à dedução da fórmula de Bhaskara, os antigos babilónios não chegaram a generalizar tais "receitas". 

Na Grécia, as equações de segundo grau eram resolvidas por meio de construções geométricas como iremos ver num exercício que ilustra o método geométrico utilizado por Euclides para achar a solução da equação x2 = s2 - sx.

No século XII D.C., Bhaskara (1114-1185), em duas das suas obras, apresenta e resolve diversos problemas do segundo grau. Antes de Bhaskara, no princípio do século IX D.C., o matemático árabe Al-Kowarismi, influenciado pela álgebra geométrica dos gregos, resolveu, metodicamente, as equações do segundo grau, chegando à fórmula do modo descrito a seguir.

Al-Kowarismi interpretava, geometricamente, o lado esquerdo da equação  x2 + px = q  como sendo uma cruz constituída por um quadrado de lado x e por quatro rectângulos de lados p/4 e x. Então, como mostra a figura abaixo, "completava" esta cruz com os quatros quadrados pontilhados de lado p/4, para obter um "quadrado perfeito" de lado x + p/2.

[Maple Bitmap]

Usando este artifício geométrico, Al-Kowarismi demonstrou que adicionando-se 4 vezes p2/16 , soma das áreas dos quatros quadrados de lado p/4 , ao lado esquerdo da equação x2 + px = q, obtinha-se (x + p/2)2, que é a área do quadrado de lado x + p/2 , isto é,x2 + px + 4 p2/16 = (x + p/2)2 .

 

Portanto, a equação x2 + px = q poderia ser escrita como (x + p/2)2 = q + p2/4 implicando que x = -p/2 ± [Maple Math] , que é a fórmula de Bhaskara.

A descoberta de que um trinómio do segundo grau tem para imagem uma parábola, remonta à Antiguidade. As primeiras referências a respeito encontram-se nos trabalhos do matemático grego Menaecamus ( 375-325 A.C. ), que obteve a parábola seccionando um cone circular recto por um plano não paralelo à base. Pode-se provar que a curva assim obtida é a imagem de uma equação do tipo y = ax2, como mostra a figura abaixo.

[Maple Plot]

 voltar ao início