wpe74.jpg (12761 bytes)

piramide.gif (13193 bytes)

 

        ... É um poliedro em que uma das faces é um polígono qualquer, a que se chama base; as outras faces são triângulos que têm um vértice comum, chamado vértice da pirâmide.

    Uma pirâmide diz-se recta, se o projecção do vértice da pirâmide coincide com o centro da base. Uma pirâmide recta cuja base é um polígono regular diz-se uma pirâmide regular. Nas pirâmides regulares, as faces laterais são triângulos isósceles. Quando a projecção do vértice não coincide com o centro do polígono da base, diz-se que a pirâmide é oblíqua.

fig_6.gif (68098 bytes)

       Altura de uma pirâmide é a distância do vértice da pirâmide ao plano da base. À altura de cada uma das faces laterais chama-se apótema da pirâmide. É evidente que, sendo a base um polígono regular, este também tem um apótema, a que se chama apótema da base

fig_7.gif (22972 bytes)

    Numa pirâmide podemos encontrar os seguintes elementos:

fig_5.gif (35940 bytes)

 

    Tal como acontece com os prismas, também as pirâmides se classificam de acordo com o polígono da base.

    Assim, teremos:

    Quando a pirâmide é formada por quatro triângulos equiláteros geometricamente iguais, tem o nome especial de tetraedro, que é um poliedro regular porque as suas faces são polígonos regulares sobreponíveis e é idêntico em todas as faces, isto é, neste poliedro não há vértices nem bases especiais. Em geral, uma pirâmide regular não é um poliedro regular.

 

    Para que os alunos compreendam o processo pelo qual se determina a área da superfície de uma pirâmide regular, sugerimos a construção de uma pirâmide quadrangular em cartolina, cuja base tenha 49 cm2 de área e cujo apótema tenha 10 cm.

    Atendendo à planificação, os alunos poderão ver facilmente que a área não é mais do que a soma da área lateral, Al (sombreada a vermelho), com a área da base, Ab (sombreada a cinzento):

fig_32.gif (39321 bytes)

    A área lateral é a soma das áreas das faces (triângulos isósceles). Sendo p o perímetro da base, Al = (p × a) ÷ 2 . A área total será, então, dada pela seguinte fórmula:

At = (p × a) ÷ 2 + Ab .

 

    Para entender a fórmula que permite calcular o volume de uma pirâmide, podemos pensar num caso muito evidente: uma pirâmide quadrangular regular cuja base seja uma face de um cubo (de aresta a) e cujo vértice seja o centro desse cubo.

fig_33.gif (34491 bytes)

    Vê-se claramente que no cubo cabem seis pirâmides iguais àquela - tantas quantas as faces do cubo. O volume de cada uma é, então, a sexta parte do volume do cubo, ou seja, V = a3 ÷ 6. Como a altura, h, de cada pirâmide é metade da aresta do cubo, ou seja, a aresta do cubo vale 2h, temos então que o volume da pirâmide pode ser escrito da seguinte forma: V = (Ab × 2h) ÷ 6 = (Ab × h) ÷ 3 , e portanto, o volume de uma pirâmide é igual a um terço do produto da área da base pela sua altura.

    O Princípio de Cavalieri autoriza-nos a afirmar que esta conclusão é válida para qualquer pirâmide.

 

Planificações:

plan_piramide1.gif (28756 bytes)fig_15.gif (21215 bytes)

 

 

BOTAOVOLTAR.GIF (904 bytes)

Voltar a POLIEDROS