APLICAÇÕES

   O interesse pelo estudo das cónicas remonta a épocas muito recuadas. De facto, estas curvas desempenham um papel importante em vários domínios da física, como a Astronomia, a Economia, a Engenharia e em muitas outras situações, pelo que não é de estranhar que o interesse pelo seu estudo seja tão antigo.

   Vejamos então algumas situações onde estas curvas aparecem e onde o seu estudo é fulcral.

   Suponhamos que temos uma lanterna direccionada para uma parede, então o feixe de luz emitido desenhará nessa parede uma curva cónica. Este facto acontece porque o feixe de luz emitido pela lanterna forma um cone, e também porque a parede funciona como um plano que corta o cone formado. Dependendo da inclinação da lanterna relativamente à parede, assim se obtém uma circunferência, uma elipse, uma parábola ou uma hipérbole.

 

   Certos candeeiros de cabeceira, cujo abat-jour é aberto segundo uma circunferência, desenham na parede uma hipérbole e no tecto uma elipse.
   Os Engenheiros da área da iluminação usam este facto, entre outros, para construírem candeeiros, lanternas, etc...

   O som emitido por um avião a jacto supersónico tem a forma de um cone, pelo que, ao chocar com a Terra vai formar uma curva cónica. Assim, dependendo da inclinação do avião relativamente à Terra, vamos obter elipses, parábolas ou hipérboles. A audiometria usa este facto, entre outros, para saber a que distância da Terra o avião pode ultrapassar a velocidade do som.

   A superfície formada pela água dentro de um copo é elíptica, sendo circular apenas no caso em que o copo está direito, isto é, está alinhado com o nível, na horizontal.

   Se animarmos o copo com um movimento rotativo sobre si próprio, a superfície do líquido nele inserido será a de um paraboloide. Esta técnica é frequentemente usada para se obter este tipo de superfície.

   Na Astronomia, Kepler mostrou que os planetas do sistema solar descrevem órbitas elípticas, as quais têm o sol num dos focos.

 Também os satélites artificiais enviados para o espaço percorrem trajectórias elípticas, mas nem todos os objectos que circulam no espaço têm órbitas elípticas. Existem cometas que percorrem trajectórias hiperbólicas, os quais ao passarem perto de algum planeta com grande densidade, alteram a sua trajectória para outra hipérbole com um foco situado nesse planeta. Como a parábola é um caso de equilíbrio entre a elipse e a hipérbole (lembrem-se que a excentricidade da parábola é igual a um), a probabilidade de existir algum satélite com órbita parabólica é quase nula. Mas isso não impede a existência de satélites com esta trajectória.

   Também as trajectórias dos projectéis, num ambiente sob a acção da força da gravidade, são parabólicas. Já no ambiente terrestre, onde existe a resistência do ar, essas trajectórias são eliptícas, mais propriamente, arcos de elipses. No entanto, por vezes, as diferenças entre as trajectórias eliptícas e as parabólicas são quase indiscerniveis, pelo que, o leitor-cibernauta mais interessado poderá facilmente verificar estes factos tomando atenção ao jacto de água de uma mangueira, cuja a abertura está inclinada para cima. A balística (ciência que estuda as trajectórias de projécteis) faz uso deste facto para determinarem o local da queda de um projéctil.

   Fazendo uso da propriedade reflectora da parábola, Arquimedes construiu espelhos parabólicos, os quais por reflectirem a luz solar para um só ponto, foram usados para incendiar os barcos romanos aquando as invasões de Siracusa. Lembre-se que a concentração de energia gera calor.

   De facto, as propriedades reflectoras das cónicas, e não somente as da parábola, têm contribuído para a construção de telescópios, antenas, radares, faróis, ópticas dos carros, lanternas, etc... Na verdade, alguns dos objectos mencionados também obedessem à propriedade refractora das cónicas. Esta propriedade está intimamente ligada à propriedade reflectora, pelo que os seus estudos são mais idênticos. Só para dar uma amostra de objectos mais vulgares que usam a propriedade refractora das cónicas, mencionamos os seguinte: os óculos graduados, as lupas e os microscópios.

   A partir da propriedade reflectora das parábolas, os engenheiros civis construíram pontes de suspensão parabólica. Se imaginarmos os cabos que prendem o tabuleiro da ponte como raios de luz, facilmente verificamos que o cabo principal, aquele que passa pelos pilares da ponte, tem forma de uma parábola.

   As extremidades das asas do famoso avião britânico spitfire, usado com grande sucesso na II grande Guerra, eram arcos de elipses. Embora a razão da sua escolha se prenda ao facto de se obter mais espaço para transportar munições, este tipo de asa diminuía a resistência do ar, favorecendo melhores performances ao avião em voo.

   O sistema de localização de barcos denominado por LORAN (LOng RAnge Navigation), faz uso das hipérboles confocais, onde os radares estão nos focos. A ideia é baseada na diferença de tempo de recepção dos sinais emitidos simultaneamente pelos dois pares de radares, sendo um dos radares comum aos dois pares. O mapa assim construido apresenta curvas hiperbólicas. Esta técnica foi usada na II grande Guerra, para detectar barcos japoneses.